We first consider continuous functions \(f \) on \(\mathbb{R} \) where both the limits
\[
\lim_{x \to -\infty} f(x) \quad \text{and} \quad \lim_{x \to +\infty} f(x)
\]
exist in \(\mathbb{R} \). One gets:

Theorem 1 There exists a nontrivial sixth-order ADE of the form
\[
P(x; y', y'', \ldots, y^{(6)}) = 0
\]
such that any real continuous function \(f \) on the real line can be uniformly approximated by the real analytic solutions of (2), provided that the limits in (1) exist in \(\mathbb{R} \).

Corollary 1 There exists a nontrivial ADE of the form
\[
P(y', y'', \ldots, y^{(7)}) = 0
\]
such that the real-analytic solutions have the same property as the real-analytic solutions of the ADE (2).

Theorem 2 There exists a nontrivial AFE of the form
\[
P(y'(x), y'(x + \log 2), \ldots, y'(x + 5\log 2)) = 0
\]
such that for any compact interval \(I \) the real-analytic solutions of (3) (defined on the whole real line) are dense in \(C(I) \).

Theorem 3 Let \(n \) denote some positive integer, and let \(P \) be some non-zero polynomial having real coefficients. Then, for every positive real number \(\Delta \) and any compact interval \(I \subset \mathbb{R} \) satisfying \(|I| > 2n\Delta \), the continuous solutions \(g \) of the AFE
\[
P(g(x), g(x + \Delta), \ldots, g(x + n\Delta)) = 0 \quad (x \pm n\Delta \in I)
\]
are not dense in \(C(I) \).
By $M(\mathbb{C})$ we denote the set of meromorphic functions f defined on \mathbb{C} such that additionally two conditions are satisfied:

(i) $f(z)$ is analytically at every point z with $\Im z = 0, \pm 2\pi, \pm 4\pi$.

(ii) $f(z)$ takes real values at points z from the real axis.

Particularly every function $f(z)$ from $M(\mathbb{C})$, where z is restricted on the real line, represents a real-valued analytical function from $C^\omega(\mathbb{R})$, and there is some real-valued analytical antiderivative defined on the real axis.

Theorem 4 Let I denote a compact interval. Then every function from $C(I)$ can be uniformly approximated by real-valued analytic functions y defined on I, such that $y' \in M(\mathbb{C})$ holds and y' satisfies the AFE

$$y_1y_2^2y_3y_5 - y_1y_2^2y_4 - y_1y_2y_4y_5 + y_1y_2y_3y_4 + y_1y_2y_1^2y_5$$

$$-y_1y_3y_4^2y_5 - y_2^2y_3y_4y_5 + y_2^2y_1^2y_5 = 0 \quad (4)$$

with

$$y_1 := y'(x - 4\pi i), \quad y_2 := y'(x - 2\pi i), \quad y_3 := y'(x),$$

$$y_4 := y'(x + 2\pi i), \quad y_5 := y'(x + 4\pi i).$$

The identity in (4) represents an AFE of order one for real-valued analytical functions on arbitrary compact intervals I.