ON A UNIVERSAL DIFFERENTIAL EQUATION
FOR THE ANALYTIC TERMS OF
C^∞-SUPERPOSITIONS ON THE REAL LINE

Carsten Elsner

Let $\omega \in C(\mathbb{R}) \to \mathbb{R}_{>0}$ denote a bounded continuous weight function taking positive values everywhere, such that
\[\int_{-\infty}^{\infty} \omega(x) \, dx = 1 \]
holds. Then, by
\[\|g\|_\omega := \int_{-\infty}^{\infty} \omega(x) |g(x)| \, dx \quad (g \in C(\mathbb{R})) , \]
a norm for continuous functions g on the real line is given.

Theorem 1 There exists a nontrivial autonomous algebraic differential equation $P = 0$ of order at most 7, where P denotes an effectively computable polynomial in at most eight variables, having the following property.

Let $f \in C(\mathbb{R}) \to \mathbb{R}$ be some continuous function defined on the real line and let ε be some arbitrary positive number. Then a superposition $H \in C^\infty(\mathbb{R})$ of analytic functions $H_r \in C^\omega(\mathbb{R})$ exists, say
\[H(x) = \sum_{-\infty < r < \infty} H_r(x) \quad (x \in \mathbb{R}) , \]
such that $\|f - H\|_\omega < \varepsilon$ holds, and every analytic function H_r solves the above universal differential equation. Moreover, every analytic function H_r on \mathbb{R} is an entire function on \mathbb{C}.