ÜBER GEWISSE LÖSUNGEN UNIVERSELLER DIFFERENTIALGLEICHUNGEN IN ALGEBRAISCHEN PUNKTEN

Carsten Elsner

It is shown that an effectively computable algebraic differential equation of order five exists such that on the one hand every continuous function \(f : \mathbb{R} \to \mathbb{R} \) can be approximated uniformly on \(\mathbb{R} \) by a sequence \(y_n(x) \) of \(C^\infty(\mathbb{R}) \)-solutions. On the other hand let \(1 \leq k_1 < k_2 < \ldots < k_r = K \) be integers. Then, for every index \(n \) and for numbers \(y_n^{(k_1)}(\tau), \ldots, y_n^{(k_r)}(\tau) \), a linear transcendence measure exists which is effectively computable, i.e. a lower bound exists for

\[
\sum_{\rho=1}^{r} \psi_\rho y_n^{(k_\rho)}(\tau)
\]

with real algebraic numbers \(\psi_1, \ldots, \psi_r \). This measure depends on degrees and heights of \(\tau \) and \(\psi_1, \ldots, \psi_r \), but also on the modulus of continuity of the function \(f \) within an interval containing \(\tau \) and on the distance between \(y_n(x) \) and \(f(x) \) on \(\mathbb{R} \). The proof requires extensive estimates of degrees and heights of polynomials and algebraic numbers which are connected with the explicit solutions \(y_n(x) \) of the universal differential equation. The linear transcendence measure is finally given by a quantitative version of Baker’s theorem on linear forms in logarithms.