ON THE VALUE DISTRIBUTION OF ERROR SUMS FOR APPROXIMATIONS WITH RATIONAL NUMBERS

Carsten Elsner and Martin Stein

Integers 12 (2012), A66

Let α be a real number with convergents p_m/q_m from the continued fraction expansion of α. In this paper we investigate the functions $E(\alpha) := \sum_{m \geq 0} |\alpha q_m - p_m|$ and $E^*(\alpha) := \sum_{m \geq 0} (\alpha q_m - p_m)$ depending only on α and prove that their values are dense in $[0, (1+\sqrt{5})/2]$ and $[0, 1]$, respectively. For any sequence $(\alpha_\mu)_{\mu \geq 1}$, which is uniformly distributed modulo 1, we show that both sequences $(E(\alpha_\mu))_{\mu \geq 1}$ and $(E^*(\alpha_\mu))_{\mu \geq 1}$ are not uniformly distributed. Among other things the proofs rely on an inequality for the function $E(\alpha)$, which improves a former result of the first named author.

MR 2010 Subject Classification: 11J04, 11J70, 11B05, 11B39.

Key words: continued fractions, convergents, approximation of real numbers, error terms, density, uniform distribution