ALGEBRAIC INDEPENDENCE OF VALUES OF EXPONENTIAL TYPE POWER SERIES

Carsten Elsner, Yuri V. Nesterenko, and Iekata Shiokawa

Moscow Journal of Combinatorics and Number Theory 3, no. 3-4 (2013), 44-74 [280-310].

In this paper we study variants of exponential type power series of the form $f_k(x) = \sum_{n=0}^{\infty} c_{k,n} \alpha^n / n!$ ($k = 1, \ldots, q$) with real or complex coefficients $c_{k,n}$ and with a nonzero algebraic number α. We find all subsets of $\{f_1(\alpha), \ldots, f_q(\alpha)\}$ which are algebraically independent over \mathbb{Q}. We apply our method to series with periodic sequences, i.e., with $c_{k,n} = 1$ if $n \equiv k \pmod{q}$, $c_{k,n} = 0$ otherwise and also with $c_{k,n} = \{(an + k)/q\}$ for coprime integers a and q, where $\{x\}$ is the fractional part of a real number x. More applications deal with various series formed by Fibonacci and Lucas numbers, e.g., $c_{k,n} = F_{an+k}$. All the algebraic independence results are finally reduced to the Lindemann-Weierstrass theorem.