Let $1 \leq M < N$ be integers, and denote by $CF(M, N)$ the set of all irrationals from $[0, 1]$ whose partial quotients a_ν of the continued fraction expansion satisfy $M \leq a_\nu \leq N$ ($\nu \geq 1$). It is proved that every real number can be expressed as a sum of an integer and m irrationals from $CF(M, N)$, where a lower bound for m is explicitly given. This includes Hall’s theorem, and, e.g., the case where $M = N - 1$, $m = N^2 + 1$.

Although the main theorem is a special case of a result of S. Astels from 2000, our proof is focused on a generalization of a lemma of Hall concerning the iterated thinning of intervals. It is easier to handle this tool than the theory of Cantor sets underlying Astels’ approach from 2000.

2010 MS Classification numbers: Primary: 11A55, Secondary: 11B05, 11Y65

Key Words: Continued fractions, Hall’s theorem